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Abstract

The use of sodium laser beacons in adaptive optics is relatively novel, and there is

much current research in this field. Perspective elongation is a side effect of using

these beacons, and results in a different shaped beacon viewed by each subaperture,

depending on its location with relative to the laser. Typical calibration of wavefront

sensors assumes that each subaperture image is identical, reducing accuracy.

Unfortunately, telescopes built with a Coudé path have a rotating exit pupil that

rotates when the telescope elevation or azimuth changes. This rotation ensures that

static calibration of the sensor with a single elongated reference beacon is inadequate,

and a different approach is required.

This research models the sodium beacon, its transmission through the atmosphere

and its measurement by a Shack-Hartmann wavefront sensor (SHWFS). By predicting

the extent of beacon elongation and Coudé rotation, it is possible to produce reference

images for each subaperture throughout an engagement scenario. These reference

sources are then used to continuously recalibrate the system as it changes orientation.

This model measures the effect of perspective elongation and Coudé on SHWFS

measurements to quantitatively determine the extent of degradation that occurs. It

also predicts the improvement that could be achieved by considering these effects,

and allows comparisons between alternate system configurations. From the computer

model, it was determined that accounting for perspective elongation and rotation can

reduce errors in measurements by up to 50% in a typical scenario.
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EFFECT OF COUDÉ PUPIL ROTATION ON SODIUM LASER BEACON

PERSPECTIVE ELONGATION

I. Introduction

Adaptive Optics (AO) is a technique used to measure and improve image quality

that has been distorted by optical aberrations. It is primarily used in astronomy,

where the atmosphere is the cause of aberrations, and also in retinal imaging. A

natural star can often be used as a reference to measure an atmospheric effect on an

incoming wavefront, but may not be available in the region of interest. To compensate

for this, the sodium laser guide star was developed for the Starfire Optical Range

(SOR). The laser beacon produces a light source by resonating sodium atoms in the

upper atmosphere, and has the advantage of being capable of being moved over any

sky region of interest.

The Starfire Optical Range also operates a telescope that utilizes a Coudé path.

A Coudé path uses multiple mirrors to reflect the incoming light in such a way that

the optical path beyond these mirrors remains fixed in one direction, regardless of

telescope orientation. Without using a Coudé path, most AO components are phys-

ically attached to the telescope, severely limiting the allowable size and complexity

of optical components. A Coudé path allows equipment to be physically separated

from the telescope, enabling greater flexibility in the design of downstream optics.

One unfortunate effect of using a Coudé path is the rotation of the optical image as

the telescope varies in azimuth or elevation. In many scenarios, this image rotation is

of little concern, and can be corrected using post-processing. If used in conjunction

with a side-launched laser beacon, however, asymmetries in the reference source can

1



degrade AO system performance.

1.1 Problem Statement and Hypothesis

The Starfire Optical Range operates a 3.5m telescope on a Coudé path with a

sodium beacon reference for its AO system. This combination produces the unique

effect of both elongating the reference source, and also rotating its relative location

to the sensor. The goal of this research is to model the behavior of Shack-Hartmann

Wavefront Sensor (SHWFS) performance with an AO system using a telescope with

a Coudé path and a side-launched sodium Laser Guide Star (LGS). Specifically, the

objectives include:

• determine the extent of Coudé rotation in a typical engagement scenario,

• model a sodium laser beacon and its elongation effects for each subaperture

within a typical AO system,

• determine the effect of beacon elongation and Coudé rotation on sensor centroid

measurements, and the magnitude of the resulting error after reconstructing of

the original wavefront,

• test out a novel means of compensating for beacon elongation measurement

errors, and

• maintain robustness in modeling the scenario, to allow changes to the engage-

ment scenario and system configuration with minimal changes to source code.

1.2 Thesis Overview

Chapter II provides the background information required to develop and under-

stand the model of this particular AO system along with the most relevant related

2



literature. Specifically, it details the cause and effect of Coudé rotation and per-

spective elongation, in addition to the basics of AO, wavefront measurement and

reconstruction. Chapter III details the development of the computer model and the

mathematical principals used to characterize the scenario.

Chapter IV presents the results that are produced by the computer model, provid-

ing comparisons between the current system configuration and the improvement that

could be achieved through considering the effect of Coudé rotation and perspective

elongation during sensor calibration.

Finally, Ch. V draws conclusions from the results presented in Ch. IV, and

summarizes the key outcomes. It also suggests how to improve the current system,

and outlines areas that would benefit from additional research in this area.
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II. Background

This chapter introduces the concepts of atmospheric turbulence and its effect on

the propagation of light. Adaptive optics (AO) systems are discussed as a method to

measure and compensate for turbulence, and sodium laser guide stars in particular

are discussed. Finally, Coudé rotation is described to enable a greater understanding

of the specific issues affecting the sponsor of this work. Current literature relating to

laser guide star perspective elongation is also reviewed.

2.1 Adaptive Optics

Light that has been transmitted through a turbulent medium can be corrected by

an AO system and returned to its original form. An AO system typically consists of a

Wavefront Sensor (WFS) that measures the turbulence affecting the incident light, a

Fast Steering Mirror (FSM) that corrects low-order aberrations, a Deformable Mirror

(DM) capable of correcting higher-order aberrations, and a controller that commands

the mirrors based on WFS measurements. The primary focus of this research is the

WFS, and in particular a proposed calibration technique that is designed to improve

the accuracy of WFS measurements. The application is for compensating atmospheric

imaging systems, so this chapter begins with a review of optical turbulence.

2.1.1 Atmospheric Turbulence.

The atmosphere is not a uniform medium. Localized inhomogeneities in the atmo-

sphere cause differences in temperature, pressure and consequently index of refraction.

These localized inhomogeneities are called eddies, and are defined as the volume over

which the refractive index remains relatively constant. The size of these eddies can

vary, but the minimum and maximum size of an eddy is defined by the inner and
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Figure 1. Various power spectral density models.

outer scales, l0 and L0, respectively. Kolmogorov characterized the Power Spectral

Density (PSD) of atmospheric turbulence Φ as a function of wavenumber κ (measured

in [rad/m]) by[1]

Φ(κ) = 0.033C2
nκ

−11/3, (1)

where C2
n is the structure constant of the variation of the refractive index in the

atmosphere and effectively describes the strength of the turbulence. Equation (1)

holds when 1/κ is within the inner and outer scales, or alternatively,

1

L0

≪ κ ≪ 1

l0
. (2)

Wavenumbers that meet this condition are said to be within the inertial subrange of

the turbulence. In Kolmogorov turbulence, the inner and outer scales are set to 0

and infinity, respectively. These values are not physically realistic, and more realistic

PSD models have been developed to account for this, including the Tatarskii, von

Kármán and modified von Kármán spectra[20]. These models contain additional

factors accounting for inner and outer scale that are responsible for the low-frequency

roll off and the high frequency cut-off, as shown in Fig. 1.
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Figure 2. The effect of eddies on an incoming wavefront.

For light that propagates through turbulence, the different indices of refraction

within various eddies cause the light to travel at different speeds. Figure 2 illustrates

this by showing various wavefronts of light as it is transmitted from a star to earth.

Although a star emits light spherically, it is approximately planar by the time it

reaches the atmosphere of earth. As it passes through the atmosphere, the plane

wave passes through eddies with varying refractive indices, causing the light to refract

differently at different locations. By the time it reaches a ground-based telescope, the

wavefront is no longer planar, but aberrated.

Detailed analysis of weak turbulence effects on wave propagation uses the Rytov

method[1]. This method essentially solves Maxwell’s equations with perturbation

theory. The statistics of the perturbations are governed by Kolmogorov theory, and

solutions are obtained for the turbulence-degraded field’s mutual coherence function

and similar quantities. The details are not presented here, just the key resulting

turbulence parameters.

An aberrated wavefront can be divided into segments that are roughly spatially

coherent, and this scale scale size indicates the magnitude of the turbulent phase

fluctuations. The length of this segment is known as Fried’s parameter, r0. In the
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case of an initially planar wavefront, a more formal definition for r0 is[9]

r0 , 0.185

[
λ
2∫ z

0
C2

n(ξ)dξ

]3/5

, (3)

where λ is the mean wavelength of the incoming light and
∫ z

0
dξ is the integral of

the path though which the light is propagating. A small r0 indicates a small region

of spatial coherence, and therefore large phase fluctuations. Conversely, a large r0

indicates weaker phase fluctuations. For light at 500nm propagating vertically, typical

values of r0 range from 5-10cm.

In addition to eddies causing spatial variations in the refractive index of the at-

mosphere, they do not remain stationary, and hence cause temporal temporal fluc-

tuations as well. One parameter that is commonly used to determine the rate of

temporal fluctuations is the Greenwood frequency, fG. Typical values of fG are of the

order of 10-100Hz[1]. A formal definition is not provided here because the dynamic

aspect of turbulence is not considered in this research.

2.1.2 Wavefront Measurement.

An aberrated wavefront can be measured by a wavefront sensor (WFS), which is

required to compensate for the effects of atmospheric turbulence. One common WFS

is the Shack-Hartmann (SH) WFS. The SHWFS comprises of an array of lenslets of

size on the order of r0. This ensures that the light incident on each lenslet is roughly

spatially coherent, and can therefore be represented as a plane wave. As the plane

wave passes through the lens, it is focused to a sensor in the focal plane behind it.

Figure 3 depicts a lens focusing light onto a detector, and represents one lenslet within

a SHWFS.

The light is not be imaged to a perfect point, as predicted by geometric optics,
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Figure 3. The effect of a lenslet on an incoming wavefront.

but instead is affected by the finite dimensions of the lenslet. The resulting diffraction

limited spot is the Fraunhofer diffraction pattern of the lenslet, as described by Ref.

[10]

h(u, v) =
A

λzi

∫∫ ∞

−∞
P (x, y) exp

{
−j

2π

λzi
(ux+ vy)

}
dxdy, (4)

where A is the amplitude of the incident field, λ is the wavelength of the incident

light, zi is the propagation distance and P (x, y) is the pupil function. For a square

lenslet, Eq. (4) simplifies to

h(u, v) =
A

λzi

∫∫ d/2

−d/2

exp

{
−j

2π

λzi
(ux+ vy)

}
dxdy, (5)

=
Ad2

λzi
sinc(d u)sinc(d v), (6)

where d is the width of the lenslet.

Equation (6) describes the coherent impulse response of the system, which can be

used to determine the Point Spread Function (PSF) of the system, H(u, v) = |h(u, v)|2.

The PSF is quite useful in incoherent imaging systems because it can be used to

determine the image of any input, not just a point source. For other inputs, the

diffraction image Ii(u, v) is simply a convolution of the geometrically predicted image,
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Ig(u, v) and the PSF,

Ii(u, v) = Ig(u, v)~ H(u, v). (7)

The light focussed by a Shack-Hartmann lenslet is measured by an array of pixels

at the focal plane of the lenslet. Figure 4 depicts the simplest detector, a quad cell

detector consisting of a 2×2 pixel array. The individual detector pixels are referenced

according to their vertical and horizontal location relative to the center of the detector.

Because the imaged spot typically spans multiple pixels, the location of its center can

be determined from the relative number of photons measured at each pixel. The x

and y centroids, xc and yc, can be computed by the weighted centroid calculation

xc =

∑
i,j xi,jIi,j∑

i,j Ii,j
,

yc =

∑
i,j yi,jIi,j∑
i,j Ii,j

, (8)

where xi,j and yi,j are the numeric indices of each pixel, indicating their location with

respect to the center of the detector, and Ii,j is the measured intensity in the i, j
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pixel. For the quad cell detector depicted in Fig. 4, this simplifies to

xc =
IB + ID − (IA + IC)

IA + IB + IC + ID
,

yc =
IA + IB − (IC + ID)

IA + IB + IC + ID
, (9)

where IA,B,C,D represents the measured irradiance in pixels A,B,C and D.

For a plane wave perpendicular to the optical axis, the image is formed on the

optical axis. For plane waves oblique to the optical axis, however, the image is

focused to a point that is laterally displaced from the optical axis, as illustrated in

Fig. 3. Although Fig. 3 shows only a one dimensional cross section of the light being

imaged by the lens, the light is actually displaced in both the horizontal and vertical

directions, depending on the x and y slopes of the incident plane wave. In a SHWFS,

a detector is placed at the focal length of the lenslet and measures the intensity of

the light in each pixel of the detector.

From these centroid measurements, the original x and y slopes of the incident

wavefronts can be determined using the geometry featured in Fig. 3. Assuming the

paraxial (small angle) approximation such that

sin(θ) ≈ θ, (10)

the slope of the incident wavefront, θW , can be found from simply the lens focal

length, fl and the spot displacement, ds shown in the Fig. 3. Using trigonometry,

sin(θT ) =
ds
fl

≈ θT , (11)

and through similar triangles,

θW = θT , (12)
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deformable mirror

Figure 5. Deformable mirror correcting the aberrations of an incident wavefront.

such that

θW ≈ ds
fl
. (13)

Since the displacement of the spot is therefore determined by the slope of the

incident wavefront, the centroid theoretically measure the intensity-weighted phase

gradient. The measured x and y centroids are used to find the x and y slopes, Sx and

Sy. From Eq. (13),

Sx ≈ xc

fl
,

Sy ≈ yc
fl
. (14)

2.1.3 Wavefront Reconstruction.

The measured slopes from a wavefront sensor provide enough information to re-

construct the shape of the incident wavefront. Since the reconstructed wavefront is

the phase of a wavefront that was originally planar, it also represents the Optical

Path Difference (OPD) of the wavefront for different points across the entrance pupil.

A segmented or deformable mirror can be applied to the light to compensate the

OPD across the wavefront. The resulting ‘corrected’ image is much less aberrated, as

illustrated in Fig. 5.
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Figure 6. The Fried geometry, as defined by the location of actuators with respect to
sensor measurements.

The location at which DM actuators are placed with respect to the SHWFS sub-

apertures is called the system geometry. The ‘Fried geometry’ is defined by actuators

placed at the corners of a subaperture, rather than directly over the center, where

the slope measurements are made. This is illustrated in Fig. 6. In this figure, the

n,m subaperture is shown, with x and y slopes Sx and Sy, and reconstructed phase

measurements ϕn,m that are to be applied to the DM.

The relationship between slope measurements and reconstructed phase can be

described using linear algebra, where

Sx(n,m) =
1

2
(ϕn+1,m − ϕn,m) +

1

2
(ϕn+1,m+1 − ϕn,m+1)

Sy(n,m) =
1

2
(ϕn,m+1 − ϕn,m) +

1

2
(ϕn+1,m+1 − ϕn+1,m) (15)

These equations can be written in matrix-vector form, such that

s = Gϕ. (16)
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Unfortunately, G is not a square matrix, so the equation cannot be solved for ϕ using

simple matrix inverse techniques. Instead, a pseudo-inverse method can be used to

retrieve phase values according to[11].

ϕ = G+s

ϕ =
(
GTG

)−1
GT s

ϕ = Hs, (17)

where H is the reconstructor matrix.

Typically, approximately 87% of the phase variance caused by atmospheric turbu-

lence can be represented by tilt[11], and can be corrected using a rigid mirror. This

tilt is removed by a FSM, which greatly reduces the requirements placed on the DM.

Additionally, it can typically be updated much faster than the DM, using basic tilt

measurements [such as Eq. (9)] directly from a tracking camera, rather than using

data from the WFS. A diagram of a standard AO system using all these components

is shown in Fig. 7.

2.2 Laser beacons

The SHWFS described above requires a reference source to measure the effects of

the atmosphere on a known wavefront. Traditionally, stars have been used as reference

sources because their distance provides an almost planar wave by the time the light

reaches Earth, despite originally being emitted spherically. This is illustrated in Fig.

8.

Unfortunately, natural guide stars suffer from two major drawbacks. Firstly, stars

produce a relatively small amount of light to be used as a reference source, making the

measurement more susceptible to noise. More importantly, a viable star may not be
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Figure 7. Adaptive Optics system.

Figure 8. Spherical light waves emitted from a star appearing more planar as they
propagate.

14



available in the region of interest, especially when moving targets are considered. For

these reasons, artificial (laser) guide stars are becoming more common for adaptive

optics uses.

There are two common types of LGS’s, Rayleigh and sodium. Rayleigh beacons

rely on Rayleigh scattering from air molecules at low altitudes (approx. 20km)[19].

These beacons can be produced for lasers of varying wavelengths, allowing relatively

cheap production of high power guide stars. Unfortunately, while the majority of

atmospheric turbulence occurs at lower altitudes, the cone of light measured from

Rayleigh beacons does not include the majority of the atmosphere. Alternatively,

sodium LGS’s use resonant scattering from sodium atoms at mesospheric altitudes,

much higher in the atmosphere. The light from sodium LGS’s is therefore affected

by a much greater volume of the atmosphere, and they provide a much more realistic

representation of the effect of the total atmosphere. This is known as the cone effect,

and is illustrated in Fig. 9.

One disadvantage of sodium LGS use is the requirement for a specific wavelength

laser. Figure 10 shows both Rayleigh and Sodium layer scattering from a sodium

laser. The much longer streak is the Rayleigh beacon, caused by low-altitude Rayleigh

scattering. The much smaller spot in the upper right of the image (and inset) is the

sodium guide star.

2.2.1 Sodium Layer.

In the upper atmosphere at an altitude of approximately 90km, there is a layer of

sodium atoms at a relatively high concentration[19]. While the origin of these atoms

is not certain, research[16] suggests that it may be caused by meteorites boiling off

sodium as they pass through the atmosphere. The exact height and depth of this layer

varies with many factors, including time and location, but the literature commonly
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Sodium LGS 

Rayleigh LGS 

Figure 9. The cone effect. Due to the higher altitude of the Sodium LGS, a greater
volume of the atmosphere affects the LGS, providing a more accurate reference beacon.

Figure 10. Sodium laser guide star showing Rayleigh scattering and sodium layer
Resonance. Photo by Art Goodman and inset by Jack Drummond.
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places the layer between the altitudes of approximately 85km–95km[3, 19] at zenith.

The concentration of sodium atoms within the layer typically follows a Gaussian

distribution as a function of altitude[16].

2.2.2 Sodium Laser.

A laser operating at the 589.2nm sodium wavelength can be created by using a

Sum-Frequency Generation (SFG) technique. In this technique, two Nd:YAG lasers,

one operating at 1064 nm and another at 1319 nm can be combined to produce a

laser of wavelength 589 nm[14]. SOR has previously demonstrated laser output levels

at the sodium wavelength of approximately 50 W[8].

2.2.3 Laser Guide Star Perspective Elongation.

One of the issues affecting the performance of LGS systems is perspective elonga-

tion. This is caused by the finite depth of the sodium layer and laser beam, which

interact to form a ‘column’ of light in the upper atmosphere. When viewed directly

below the column, the scattering spot appears circular, similar to how a star might

appear. When viewed off-axis, however, the full height of the column becomes visi-

ble, and the spot becomes less circular and more elliptical in appearance. The further

off-axis, the greater the elongation of the imaged spot. This effect can be witnessed

in Fig. 11.

This issue is particularly important to consider when using a SHWFS. Centroid

measurements become less accurate when modeled with an ideal spot and not the

more realistic elliptical shape. The geometric details are shown in Figs. 13-15 and

described in Sec. 3.1.3. These measurements affect the wavefront slope calculations,

and consequently the reconstructed phase of the wavefront[21].
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Figure 11. Laser beacon elongation from measurements taken at the Keck observatory
in Hawaii. In this image, the laser is launched from the right side of the sensor.[26].

2.3 Coudé Rotation

Unlike many telescopes, telescopes that use a Coudé path are designed to provide

a fixed optical axis regardless of telescope elevation and azimuth. Unfortunately, this

causes the optical image to rotate as the telescope changes its orientation. A de-

rotation system can be used to compensate for this effect and therefore maintain a

pupil and image orientation that remains fixed, but the additional components reduce

the optical throughput to the wavefront sensor[17]. Omitting the de-rotator creates

additional complications when using laser beacons, due to the effects of laser beacon

elongation, as each subaperture spot shape is different, as shown in Fig. 11. When

the telescope moves, the pupil and laser beacon launch position rotate relative to the

wavefront sensor, so these dynamically change shape.

From Ref. [13], the rotation angle from a Coudé telescope is

θCoude = −θGregory + θel − θaz + C (18)
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where θel is the telescope elevation angle, θaz is the telescope azimuth angle, C is

a constant that describes the initial relative rotation of sensors, and θGregory is the

orientation of the object at Gregorian focus. For a stationary object such as a laser

beacon, there is no rotational component at the Gregorian focus, such that θGregory =

0. From the perspective of a fixed detector, the relative angle of the laser beacon with

respect to the sensor is simply the negative of the Coudé rotation of the exit pupil

with respect to a fixed telescope, so that

θbeac = −θCoude

θbeac = θaz − θel − C. (19)

Equation (19) shows that altering the elevation or azimuth of the telescope rotates

the relative location of the laser beacon, which correspondingly affects the elongation

of LGS spots on individual detectors as the telescope moves.

2.4 Starfire Optical Range

The Starfire Optical Range is located at the Kirtland Air Force Base (AFB) in

Albuquerque, New Mexico. It is a laboratory facility that forms part of the Directed

Energy Directorate at the Air Force Research Laboratory (AFRL). SOR houses a

handful of telescopes capable of tracking earth-orbiting satellites[28]. The most no-

table telescope is 3.5m in diameter and is shown with its sodium laser beacon in Fig.

12. The telescope forms part of an adaptive optics system capable of compensating

for the effects of atmospheric turbulence.

SOR also utilizes a side-launched sodium laser guide star, and was the first site

to demonstrate closed-loop laser beacon adaptive optics[11]. Updates planned for

the range in 2009 propose a SHWFS using a 32×32 array of quad cell detectors[15].
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Figure 12. 3.5m telescope at the Starfire Optical Range near Albuquerque, NM. with
side lauched laser[27].

It was predicted that the unvignetted Field of View (FOV) of the system would be

approximately 0.5 mrad (100 arcsec).

2.5 Related Research

This section outlines the recent research relating to the compensation of laser

beacon elongation effects on various systems. Several proposals that directly relate

to improving measurements affected by perspective elongation are described, usually

requiring expensive or complex solutions. The research described in Chapters III-V

investigates the feasibility of implementing a much lower risk solution than can be

implemented in software alone.

2.5.1 Improved Noise Model with Multiple Sensors.

Reference [2] reports the findings of a closed-loop ground-layer AO system using

laser guide stars, specifically for an Extremely Large Telescope (ELT). Since the extent

of beacon elongation is dependent on the ground separation between each subaperture

and the laser launch position, it is a major concern for very large telescopes. Even in

the preferred center-launched laser configuration, their is still a separation between
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laser and subaperture of up to 21m for a 42m diameter ELT, compared with the

maximum separation of 4.5m currently possible at SOR.

Reference [2] outlines the development of an improved noise model to account for

beacon elongation in their simulations. It describes how the variance in measurement

error is greatest in the axis of elongation, and how using multiple side-launched lasers

with corresponding WFS’s can perform almost as well as a center launched laser, if

this noise model is considered. They concede that the validity of this model requires

further study.

2.5.2 Pulsed Laser.

Reference [4] offers a unique solution to compensate for perspective elongation

caused by the thickness of the sodium layer. By substituting a narrow pulsed laser

in lieu of a Continuous Wave (CW) laser, they propose that the depth of the sodium

layer that is illuminated by the laser at any time can be shallow enough that minimal

elongation of the LGS is incurred.

Unfortunately, this solution has complications. Although the proposed pulsed

lasers exist (requiring pulse lengths <2µs and enough power for adequate photon

return), the WFS itself must be upgraded to work effectively with the laser. It is

proposed that either the image is realigned or the WFS is moved as the illuminated

volume progresses through the sodium layer. While technically possibly, this solution

still requires significant work in sensor design and implementation.

2.5.3 Matched Filtering.

Reference [22] describes several techniques designed to improve SHWFS perfor-

mance, including threshold center of gravity and weighted center of gravity. Although

the techniques were proposed to analyze noise susceptibility using a symmetric LGS,
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one technique may prove to be well-suited to compensating perspective elongation

effects. Reference [22] proposes image correlation as a form of matched filtering to

determine the actual centroid of a detected spot. The method involves correlating

an ideal image with the actual detected image to determine the location of greatest

similarity.

This method may severely reduce measurement errors caused by elongation, but

suffers two major drawbacks. First, it would require ideal images for each subaperture

and each telescope orientation, which requires more research into LGS production or

experimental data. Secondly, the correlation operation is computationally intensive,

and may not be a feasible solution for real-time operation with today’s processing

technology.

2.5.4 Centroid Gain Correction.

Reference [25] describes simulations designed at SOR that model the effect of

perspective elongation on centroid gain measurements. The research is designed to

consider a dynamic laser launch position (caused by Coudé rotation). The simulations

include a Gaussian beacon model for subaperture images which is used to determine

centroid gains at each subaperture by performing a calibration type operation with

each image. The model shows the greatest variance in gradient measurements cor-

responds to the subapertures affected by the greatest elongation. The model also

predicts the Strehl ratio for various scenarios, predicting increased system perfor-

mance at higher elevation angles and in weaker turbulence.

The research described in Chapters III-V extends upon what is developed in Ref.

[25] to consider the effect of elongation after wavefront reconstruction. The method

employed to determine centroid gains in Ref. [25] is used to predict new calibration

factors to improve system performance. The research in this thesis goes further to
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investigate the effect of detector resolution on system performance.
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III. Methodology

This chapter outlines the methods and techniques used to achieve the objectives

outlined in Chapter 1. It outlines the parameters used to represent the SOR site and

the mathematical expressions that are used to model the system geometry. Finally,

the implementation of these functions into MATLAB environment is described.

3.1 Modeling the Site

As outlined in Chapter 1, an objective of this model is to maintain robustness

such that many different AO system configurations may be examined with minimal

alteration of source code. Of primary concern, however, is the current configuration in

operation at the Starfire Optical Range (SOR). For this reason, the SOR configuration

is considered the baseline against which other setups are compared.

3.1.1 SOR Configuration.

Reference [15] discusses a proposed upgrade to SOR’s AO system for its 3.5m

telescope in 2009. The proposed upgrade is used as the baseline for modeling the AO

system, and is described below:

• The primary mirror is 3.5m in diameter;

• The WFS contains an array of 32×32 subapertures; and

• Each subaperture is imaged on to a quad cell detector.

The following assumption is made about specifications not found in the literature:

• The sodium laser is launched approximately 1 m from the edge of the telescope

aperture, based on pictures of the telescope and laser launch.
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3.1.2 Turbulence Model.

The turbulence model used in this research is Kolmogorov turbulence, as discussed

in Chapter 2. To simulate turbulence for a telescope viewing directly overhead, a sin-

gle phase screen may be produced that mimics the phase difference from an originally

planar wave that atmospheric turbulence would create[20]. To assist in simulating

wave propagation, two MATLAB toolboxes were used. These are WaveProp and

AOTools toolboxes, developed by the Optical Sciences Company (tOSC) [5, 6]. The

included function kolmogphzscrn can produce a randomly drawn phase screen to

model turbulence for a given r0 and screen size.

To determine the required r0 for the SOR site, it is necessary to determine the

C2
n profile and wind model along the propagation path. The Hufnagel-Valley 5/7

(H-V5/7) structure constant profile is commonly used, as is the Greenwood/Gaussian

wind model, which depends on parameters such as wind velocity and height of the

tropopause. A specific case of the Greenwood/Gaussian model is the Bufton model[1],

which has been implemented in these calculations. Researchers at tOSC have indi-

cated that these models give good agreement with atmospheric measurements made

at SOR.

3.1.3 Sodium Layer Dimensions.

The distance to the sodium layer boundaries is a consideration that affects the

extent of beacon elongation. Common values for the height of the sodium layer at

zenith are around 85-95km [24, 25]. Regardless of the height chosen, the distance to

the sodium layer increases as the telescope moves away from the zenith position. The

geometry used to determine the distance to the sodium layer boundaries is shown in

Fig 13.

The greater distance to the sodium layer boundaries at lower elevations typically
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Figure 13. Geometry showing the dependency of telescope altitude on the distance to
the upper boundary of the sodium layer. The blue lines represent the upper and lower
boundaries of the sodium layer surrounding a section of the earth in green. θel is the
elevation angle of the telescope above the horizon.

produce a smaller angular width of the laser beacon, corresponding to less elongation.

This is despite the longer column of light produced by the laser as it travels at an

angle through the layer. Using the law of cosines, the distance to the (upper or lower

edge) sodium layer boundary for a given elevation angle, θel, is

hNa = R cos
(π
2
+ θel

)
+

√
(hzen +R)2 −R2 sin2

(π
2
+ θel

)
, (20)

where R = 6371 km is the average radius of the earth and hzen is the (upper or lower)

height of the sodium layer at zenith. At zero elevation, the distances to the lower and

upper boundaries of the sodium layer are therefore 104.4 and 110.4 km, respectively.

3.1.4 Angular Width.

For side mounted lasers, such as what is operated at SOR, the laser must be

tilted to center the beacon over the telescope. This amount of tilt required affects the
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Figure 14. Geometry showing the effect of laser tilt and distance to the sodium layer
boundaries on the angular width of the imaged beacon at a particular subaperture[11].

angular width of the beacon as viewed from a ground position. Figure 14 illustrates

how the laser tilt and distance to the sodium layer boundaries are related to the

angular width of the imaged beacon.

Applying trigonometry to Fig. 14, the angular width of the beacon, relative to a

subaperture within the telescope is

θbeacon = θupper − θlower

θbeacon = arctan

(
hNa u

Dupper

)
− arctan

(
hNa l

Dlower

)
, (21)

where Dupper and Dlower are projected horizontal distances from the subaperture to
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Figure 15. Illustration of the telescope aperture showing relative distance from each
subaperture to the laser beacon.

the edge of the scattering spot, as shown in Fig. 14. Dupper and Dlower are given by

Dupper = Drel − hNa u sin (θtilt) ,

Dupper = Drel − hNa u sin (θtilt) ,

Drel is the distance from each subaperture to the laser, and hNa u and hNa l are the

distances to the upper and lower boundaries of the sodium layer, respectively. Drel

depends on the rotation of the laser beacon relative to the telescope, as calculated

from Eq. (19), and the location of each subaperture within the telescope. This is

illustrated in Fig. 15.

3.1.5 Satellite Track.

To compare the performance of various system configurations, two sample satellite

paths have been analyzed. The first is the International Space Station (ISS), as it

could have been viewed while it passed Albuquerque, NM on Wednesday, October
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Figure 16. Track of two satellites as they pass over Albuquerque, NM on 20 October,
2010. The blue track is the LEO International Space Station, orbiting from right to
left on these axes. The ISS passes in under 10 minutes. The red track is the MEO
GPS satellite G28, orbiting from left to right and taking 7 hours to complete the pass.

20, 2010 at approximately 2130h local time. The track data is illustrated in Fig.

16, and was obtained from the NASA website[18]. The ISS maintains a Low Earth

Orbit (LEO), and this particular viewing tracks almost 180◦ in azimuth, and reaches

a maximum elevation of 54.8◦ above the horizon. This entire pass lasts less than 10

minutes.

The second is the path of a GPS satellite, G28, viewed from the same location

between 0900h and 1600h on the same day. This satellite is orbiting in a Medium-

Earth Orbit (MEO), and therefore takes much longer to complete its trajectory. This

viewing tracks 258◦ in azimuth, and reaches a maximum elevation of 64◦ above the

horizon. This satellite takes 7 hours to complete this pass. The track data was

extracted from satellite visibility software freely available on the internet[23].

These satellites were chosen primarily due to the availability of track data and

difference of orbit types. The key benefits of these orbits are their relatively high

elevation angle and wide azimuthal change compared to other crossings. The greater

change in telescope orientation required to view these satellites ensures that the Coudé

effect is more evident than in tracks which vary less in azimuth and elevation. Eight
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equally spaced points along each track are analyzed in this research.

3.2 Modeling the Wavefront Sensor

The preceding section described the environment being modeled, including the

physical characteristics of the target, transmission path and receiving telescope. This

section provides detail about how this information is applied to model the impact to

the sensor.

As in a real AO system, the Shack-Hartmann sensor must be calibrated against a

known source to determine the relationship between the tilt present on a wavefront

to the resulting lateral displacement of the spot imaged behind each lenslet. This is

typically achieved in a laboratory by using a calibration laser that acts as a point

source, i.e., has no finite extent nor elongation.

Once wavefront slopes have been measured by the WFS, they are corrected ac-

cording to this system calibration. The incident wavefront can then be corrected

through commands sent to the DM, based on the reconstruction of these slope mea-

surements. The research described here uses this technique as a baseline but also

models more realistic reference sources based on the previous geometric discussion.

It is hypothesized that these new reference sources produce more accurate calibration

factors and therefore reduce errors in the reconstructed wavefront.

Finally, the reconstructed wavefront is used to quantitatively determine how per-

spective elongation and Coudé rotation affect the performance of wavefront measure-

ments and allow effective comparisons between different configurations to be per-

formed.
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3.2.1 Subaperture Images.

Modeling the unaberrated shape that the beacon produces as viewed from the

telescope is considerably complex, due to these factors:

• the laser beam is slightly diverging as it passes through the sodium layer,

• the laser beam varies in spatial intensity,

• the density of the sodium atoms within the sodium layer varies, and depends

on many factors, and

• each lenslet views the beacon from a unique perspective angle, based on its

location within the aperture.

Due to these factors, an accurate analytic model is very difficult to achieve. From

a simply qualitative perspective, empirical data shows that the beacon appears to

have an elliptical shape, such as in Fig. 11. This model therefore uses a simple

two-dimensional asymmetric Gaussian intensity distribution to as a first order ap-

proximation of the beacon in each subaperture. This Gaussian function is given by

f(x, y) = a exp

[
−(x− xoffset)

2

2c2x
− (y − yoffset)

2

2c2y

]
, (22)

where a is a constant, x, y represent the spatial position in the subaperture with

respect to the major and minor axes of the ellipse (in meters), x, yoffset represent the

lateral displacement of the spot with respect to the center of the subaperture, and

cx, cy represent the width of the spot’s intensity along the major and minor axes of

the ellipse.

For simpler computations, the major and minor axes are aligned to a Cartesian

grid, and coordinate transformation is used to rotate the shape of each subaperture

image so that the major axis is aligned with θlaser. The transformation used to create
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the rotated grid coordinate system (x2, y2) from the original coordinates (x1, y1) at

an angle of θlaser is given by

x2 = x1 cos θlaser − y1 sin θlaser,

y2 = x1 sin θlaser + y1 cos θlaser. (23)

This transformation allows the angular width of the minor axis to be held constant,

representing the width of a non-elongated beacon. For this model, cy is kept at

0.1, representing an ellipse about 1m wide at zenith, which matches measurements

presented in Ref. [25], and appears similar to actual data presented in Ref. [4].

As previously discussed, the angular width of the major axis varies according to

the perspective of the laser beacon as viewed from the telescope. To produce the

diffraction image present at the detector, the Gaussian function is convolved with

the PSF of the Shack-Hartmann lenslet in the spatial domain. The relative widths

of the PSF and the Gaussian functions therefore determine how much of an effect

the elongation has on the resulting image. If the width of the beacon image is much

narrower than the PSF, the elongation is somewhat masked in the convolution process.

In the system that is being modeled, the beacon image ranges from roughly the same

size of the PSF to about 50% larger, depending on the location of the subaperture

and elevation of the telescope.

The convolution of the two functions is performed using a high-resolution grid to

adequately capture the effect of the beacon shape, and the intensity of the resulting

diffraction image is integrated over each pixel’s area in the detector to produce pho-

tocounts. In this model, the effect of shot noise on the detected photocounts is not

considered.
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Figure 17. Calibration curves for a quad-cell detector. The x axis shows the amount of
tilt (in radians of wavefront slope) applied to the imaged beacon, and the y axis shows
the location of the measured centroid (in units of detector width). The blue curve
is achieved using the basic sinc2 function, whereas the dotted black curve is from an
elongated beacon on the opposite side of the telescope from the laser.

3.2.2 Calibration.

The centroid calculation in Eq. (9) does not perfectly determine the center of an

imaged spot, primarily due to the discrete nature of the pixels that are measuring

a continuous spot. The accuracy can be improved by using more pixels within a

subaperture, but a basic quad cell is commonly used, as is the case in this model.

To account for this, a calibration curve is often produced to determine the mea-

sured centroid for a given tilt. A source providing a diffraction-limited spot is applied

with varying tilt. As the applied tilt is varied, the measured tilt typically follows an

“S-curve”. Figure 17 shows two such calibration curves, one for a point source and

another for an elliptical Gaussian beacon.

Due to the fact that the curve is nonlinear, the sensor is typically designed to

ensure that during normal operation in turbulence most of the local tilt on a sub-

aperture is within the central, linear region of the curve. The slope of the curve in

this region determines the conversion required between measured and applied tilt.
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In this research, two cases are compared. The initial uses the traditional method

of calibration, with a diffraction limited spot as the reference source. This spot

is translated across the detector at fine increments, and the centroid calculation is

performed at each location to determine the measured tilt and produce the calibration

curve. The gradient of the linear region is determined by using MATLAB’s polyfit

function to fit a first order polynomial between two points very close to the center of

the curve. The second case performs all the above steps, but uses the more realistic

elongated beacon image as the reference source.

The relative size of the imaged spot and the pixels that measure it affect the

gradient of the linear region of the calibration curve. It is therefore during sensor

calibration that the difference between calibration with a traditional reference source

and an elongated source will be highlighted, and provide the means to quantify the

effect of perspective elongation on wavefront measurements.

3.3 Reconstruction

To reconstruct the aberrated wavefront that is represented by the phase screen

described in Section 3.1.2, the local tilt across each subaperture must be calculated

and applied as a lateral shift of the Gaussian function. The x and y gradients of the

high resolution phase screen is determined using MATLAB’s gradient function. The

gradient values of the phase screen are averaged across each subaperture to determine

the average wavefront gradient across each subaperture. The centroid of the shifted

images, which are the intensity-weighted phase gradients, are then determined and

the sensor calibration factor is applied.

Once slope measurements are obtained, the original wavefront can be recon-

structed as described in Section 2.1.3. Typically, calculating the reconstruction matrix

which relates the measured slopes at each subaperture to the measured wavefront at
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Figure 18. WaveProp’s subapdlg toolbox, used to generate reconstruction matrices for
different system geometries.

each of the DM actuators is not an easy endeavor. Fortunately, AOTools contains a

tool which generates the geometry matrix and various reconstruction matrices for a

user-specified AO geometry. This tool is called subapdlg, and it allows the user to

input the number of actuators, number of subapertures, and the shape of the pupil

mask. A plot of the geometry used in this research is shown in Fig. 18. This plot

was generated by subapdlg.

Reconstruction of the incident wavefront provides enough information to deter-

mine the benefit resulting from an enhanced calibration method. The reconstructed

wavefront is calculated in units of radians, representing the phase difference between

two points in space. The wavefronts of the original and enhanced calibration wave-

fronts can be compared against a wavefront that is reconstructed from the original

phase screen values to determine the wavefront error in each case. The root mean

square error of the phase differences at each subaperture is calculated and the average

over all active subapertures provides a metric to compare the methods.
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IV. Results and Analysis

This chapter presents the results that were obtained using the methods discussed

in Chapter 3. The impact of telescope orientation, turbulence parameters, and de-

tector resolution are considered to characterize the effect of beacon elongation and

rotation. The primary metric used to score the performance of calibration methods

was Root Mean Square (RMS) phase error between reconstructed wavefronts.

4.1 Rotation Effects

Equation (18) describes how to determine the amount of rotation caused by a

Coudé path for a given trajectory. Using the ISS satellite track data from [18], the

Coudé rotation angle at each satellite position was determined, and is displayed in

Fig. 19. For this particular path, the telescope aperture rotates at 21.4 deg/minute

on average, and rotates less at lower elevations where the azimuthal angle to the ISS

changes much less.

4.2 Calibration Effects

As described in Sec. 3.2.2, the wavefront sensor requires calibration to determine

the detected subaperture tilt that is caused by a known reference tilt. The typical

method performs the calibration using a point source as the reference beacon, which

does not consider the effects of beacon rotation and elongation. Equation (7) describes

that the resulting PSF using square lenslets is a sinc2 function. Figure 20 shows the

result when this PSF was implemented using a side resolution of 64 grid points.

The width of the PSF is an important factor to consider. Since the literature did

not describe the complete specifications of the sensor, the PSF was chosen to cover

roughly half of the detector area, which appears to match empirical data provided
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Figure 20. Diffraction limited point spread function. This axes of this image represent
the width of one subaperture.

37



in Ref. [4]. The validity of this PSF is also checked against metrics used by tOSC

to design Shack-Hartmann sensors. tOSC define a parameter nlod, or ‘number of

spot half-widths per subaperture’, to characterize the subaperture field of view, and

defined it as

nlod =
d
fλ
d

=
d2

fλ
. (24)

As a rule of thumb, the sensor should have between 6 and 8 ×nlod across each

detector[7]. By setting the null-to-null width of the diffraction limited PSF in the

model to 2 (in arbitrary units due to the undefined lenslet diameter d and focal length

f), the diffraction limited spot size is given by[12]

=
2fλ

d
= 2,

∴ fλ

d
= 1. (25)

If the detector width is set to 3.5 (in the same arbitrary units), nlod, is also equal

to 3.5. This is less than the ideal case of 6-8 [7], but not impractical. Furthermore, the

number of pixels, npix per λ/d is another sensor specification relating to its resolution.

This value changes, depending on the detector chosen, but typically should be greater

than two to resolve a spot. For a quad cell this is 1.75, and for a 4× 4 detector it is

3.5. What these numbers indicate is that the PSF is not resolved or Nyquist sampled

in a quad cell detector, but is for the 4× 4 scenario.

Also, a PSF at this width is generally slightly larger than the geometric beacon

image for subapertures near the laser launch, and noticeably smaller than the geomet-

ric beacon image at greater elongations. Figure 21 shows the minimum and maximum

size of a beacon image caused by perspective elongation. These images contain the

entire FOV of the subaperture, as is the case of Fig. 20, for easy comparison. The

relative sizes of the beacon image and PSF determines the size and shape of the
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Figure 21. Beacon images at two subapertures. The left image shows the beacon as
viewed from the subaperture closest to the laser, and the right image shows beacon
from the furthest subaperture. These beacon images are taken at an elevation angle of
60 degrees, and would be slightly different at other angles, as discussed in Sec. 3.1.4

diffraction image after the convolution operation.

4.2.1 Standard Calibration.

In the calibration method that is typically performed, the detector is calibrated by

computing the centroid of the PSF as it is translated at regular intervals, simulating

the effect of local tilt. The calibration curve that is obtained for a quad cell detector is

shown in Fig. 17. The y-axis of Fig. 17 is measured in detector width, and the x-axis

in radians of wavefront slope, which can be easily converted to optical path difference

measured in wavelengths. Note that the maximum measurable displacement for a

quad cell detector is ±0.25 × d, where d is the detector width. This is the center of

the furthest pixel, corresponding to the case where the entire PSF is contained within

this pixel. At this tilt, the sensor is beyond its useful linear region, and the sensor

is designed such that the expected magnitude of wavefront slopes do not cause this

amount of tilt.

This calibration curve also determines the extent of the linear region of the detec-
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tor. In Fig. 17, this corresponds to roughly 30% of the detector width. The sensor

is designed such that the maximum expected local tilt rarely deflects the centroid of

the PSF beyond this point. This ensures that a linear calibration factor can be used

to represent the curve without too much error.

To determine the calibration factor, MATLAB®’s polyfit command was used

to fit a line to the center region of the curve as shown in Fig. 17. Due to symmetry

of the point source’s image, this curve is identical for both the x and y directions.

4.2.2 Enhanced Calibration.

When considering the effects of elongation and rotation on the beacon image

shape, a new reference source is required for each subaperture. This alters the cali-

bration curve at each subaperture, since the beacon image varies depending on the

relative distance and angle between the subaperture and the laser. Creating a refer-

ence source that emulates beacon elongation and rotation for laboratory use is difficult

and has not currently been achieved. This research explores a low risk solution to

providing these calibration values without producing a new reference source.

The slope of the line fitted to the linear region of the calibration curves (the cal-

ibration factor) for every subaperture is shown in Fig. 22. The lower calibration

factors represent subapertures where the beacon has greater elongation, which gen-

erally increases the linear region of the detector. Additionally, the calibration factors

for the x and y directions differ due to the anisotropic beacon image.

These new calibration factor predictions are the key to reducing the phase error

of the reconstructed wavefront. If the gradients from a standard calibration (which

does not consider beacon elongation) were displayed in a similar manner, it would

remain a constant value across the detector due to symmetry of the PSF. Furthermore,

the Coudé rotation at the sensor causes these calibration gradients to change with
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Figure 22. Calibration factors over the entire sensor. Note the relative direction of
the laser and its effect on the calibration factor across the aperture. Subapertures
furthest from the laser are affected by the most elongation, lowering the gradient of
the calibration curve.

telescope orientation, preventing the use of a simple calibration method using an

elongated source in one orientation.

4.3 Sensing Turbulence

To model the effect of turbulence, randomly drawn phase screens are generated

using the AOTools function kolmogphzscreen, such as the phase screen shown in

Fig. 23. This phase screen is continually used throughout this chapter to illustrate

the benefit of the enhanced calibration method.

To generate this phase screen, 1024 grid points were used across an aperture size

of 3.5m. The coherence diameter is set to 6.1cm for the standard case, and 50% and

200% of this value for comparison, based upon r0 calculations for the SOR site, as

described in Sec. 3.1.2. The phase screen is generated without adding any global tilt,

similar to a wavefront after the majority of tilt has been removed by a fast steering

mirror.

The local x and y wavefront gradients are then computed using MATLAB®’s

gradient function. These gradients are subaperture-averaged to align to WFS mea-

surements, as shown in Fig. 24. These local gradients are converted to a translation
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Phase screen generated with ’kolmogphzscreen’
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Figure 23. Phase screen simulating the effects of turbulence on a planar wavefront.

of the PSF at each subaperture, modeling the effect of propagation through a Shack-

Hartmann lenslet to the detector. The shift is induced as the xoffset and yoffset

variables in Eq. (22). The displacement of the turbulent Shack-Hartmann spots are

then measured using the centroid algorithm over the desired number of pixels.

The wavefront slope at each subaperture is then determined by applying the

centroid-dependent calibration factor to each centroid measurement. As expected,

the measured slopes obtained from the standard calibration varied from the enhanced

calibration.

4.4 Reconstruction

Finally, the measured wavefront slopes are reconstructed into phase values through

Eq. (17). The reconstructor matrix, H, was obtained through AOTools subapdlg

tool. Several stages of the subaperture averaging and reconstruction process are shown

in Fig. 25. Although both results appear similar to the original phase measurements,

taking the difference between them shows more clearly how much more accurate

the enhanced calibration method is. Figure 26 shows the difference between the

reconstructed and original phase. There is a fixed color scale for both images in

Fig. [26], highlighting the much lower phase error produced by using the enhanced
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Figure 24. Quiver plot of randomly generated wavefront slopes taken from the phase
screen in Fig. 23 before any calibration factor has been applied. The magnitude of
the largest slope is 8.32 radians per subaperture. These arrows also correspond to the
relative displacement of Shack-Hartmann spots.

calibration method.

4.5 Performance

The metric used to determine the performance of the model is the root mean

square error (RMSE) between the incident and reconstructed wavefront phase. To

eliminate the effect of reconstruction error, the reconstructed phases are not com-

pared directly to the original phase screen, but instead to the reconstruction of the

downsampled phase screen gradients. 50 iterations using different atmospheric phase

screens were used at each telescope orientation corresponding to a satellite position,

and the RMS phase error at each subaperture was averaged over each iteration to

determine the final RMSE.

The number of iterations ran for each orientation of the telescope was verified

by calculating the standard deviation, σRMSE, and mean, µRMSE RMS phase error
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Figure 25. Example wavefront at various stages of reconstruction. Initially, the wave-
front is downsampled from a high resolution to be fitted to the DM. The difference
between reconstructed phase from the different calibration techniques is only slightly
evident here.
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Figure 26. Difference between reconstructed and original phase.
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Table 1. Average Root Mean Square Error of reconstructed phase over ISS path.

d/r0: 3.59 1.79 0.90
detector size: 2×2 4×4 2×2 4×4 2×2 4×4

standard cal 9.59 2.94 3.89 0.63 1.63 0.21
enhanced cal 7.17 2.75 1.98 0.50 0.29 0.13
error reduction 25.2% 6.5% 49.1% 20.6% 82.2% 38.1%

after each iteration. The results of this analysis with a quad cell detector with using

standard calibration and with r0 = 3.05cm are shown in Fig. 27. As a general rule,

the number of iterations was deemed sufficient when the standard deviation of the

data set was less than 10% of the mean. In this circumstance, 50 iterations is more

than sufficient. Other configurations were tested with similar results.

The average phase RMSE across all detectors over 50 iterations of the ISS path is

shown in Table 1, as a function of r0 and detector resolution. As expected, the results

show a decrease in RMS phase error as the d/r0 value decreases, since the system is

affected by weaker turbulence. Similarly, the transition from a quad cell detector to a

4× 4 pixel detector reduces the RMS phase error in each case. The RMSE is reduced

by 49.1% through using the enhanced calibration method, compared to 20.6% if the

detector was upgraded from a quad cell to a 4×4 pixel detector. Detectors with even

greater resolution were investigated, but the reduction in error was almost negligible.
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Figure 28. Effect of turbulence on sensor measurements.

4.6 Analysis

The quad cell detector with r0 = 6.1cm was considered the baseline configuration

against which other configurations were compared. The value of r0 was first increased

then later decreased by a factor of 2 to determine the effect of atmospheric turbulence

strength on the results. Secondly, the detector resolution was improved, and finally,

a second satellite path was used to validate results. Overall, the results show that

considering elongation effects during calibration can reduce RMS wavefront error

by approximately 50% for the standard operating configuration, with typically less

noticeable benefits outside of this configuration. Images of the complete results are

displayed in Sec. 4.7.3.

4.7 Atmospheric Effects

The atmospheric coherence diameter was varied to represent varying turbulence

strengths to determine the effect on wavefront error. It was expected that the model

would show improved performance with larger coherence diameters. The mean RMSE

of the reconstructed wavefront is shown in Fig. 28.

As expected, increasing the atmospheric coherence diameter decreased RMS phase

error. In the quad cell configuration, RMSE was reduced from from 7.17 rad at d/r0 =
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Figure 29. Effect of detector resolution on sensor measurements. The left column show
the effect of improved resolution without using the enhanced calibration method, while
the right column shows the improvement after applying the appropriate calibration
factors.

3.59 to 0.29 rad at d/r0 = 0.90. This is a positive result, confirming expectations.

4.7.1 Detector Resolution.

The detector was increased in resolution from a quad-cell to a 4× 4 cell detector

to characterize the effects of detector resolution on measurements. The improvement

gained by using the enhanced calibration technique was noticeably less in this case

compared to the quad cell detector, due to the extended linear region for both elon-

gated and diffraction limited spots over 4 pixels. Detectors with resolutions greater

than 4×4 pixels were briefly investigated, but showed almost negligible improvement

due to a much greater linear region and much more precise centroid calculations.
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Table 2. Average Root Mean Square Error of reconstructed phase over GPS path.

d/r0: 3.59 1.79 0.90
detector size: 2×2 4×4 2×2 4×4 2×2 4×4

standard cal 9.52 3.05 3.91 0.66 1.63 0.23
enhanced cal 7.01 2.83 1.94 0.51 0.27 0.14
error reduction 26.4% 7.2% 50.4% 22.7% 83.4% 39.1%

4.7.2 Trajectory Differences.

The GPS satellite orbit path showed little difference in the effect on performance

of the sensor when compared to that of the ISS. This was expected, as the overall

sensor performance should not be affected by changes in the Coudé rotation of the

beacon. The full results of the GPS trajectory are shown in Table 2.

4.7.3 Complete Results.

The complete results for each turbulence strength, detector resolution and path

type combination are shown in Figs. 30–33. These figures show the difference in

RMSE between the typical calibration method (top) and the enhanced calibration

method (bottom). The d/r0 value decreases from left to right. For a 3.5m telescope

with 32 subapertures across, d = 10.94cm. The r0 value for the center plots is 6.1cm,

but is 50% smaller for the left plots and 100% greater for the right. These figures

show that the enhanced calibration method produces less error than the standard

calibration in all scenarios, but provides the greatest benefit in the quad cell scenario.
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Figure 30. Full results, ISS path, quad cell.
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Figure 31. Full results, ISS path, 4× 4 cell.
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Figure 32. Full results, GPS path, quad cell.
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Figure 33. Full results, GPS path, 4× 4 cell.
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V. Conclusions and Future Work

This research has developed a model to represent the current AO system at the

Starfire Optical Range. Although this model did not consider every aspect that

affects the AO system, including all hardware specifications and noise sources, it still

demonstrated the improvement in measurement capability that can be achieved by

considering Coudè rotation and perspective elongation.

This chapter outlines some of the areas that would require improvement before this

model could be implemented into a current system, and also some of the interesting

features that were discovered through the development of this model.

5.1 Desired Improvements

The model that was developed was kept flexible in its design to easily compare

different scenarios. Some areas of its design were kept generic for simplicity, and

require alteration before applying the model to a specific system. For example, the

PSF of the real optical equipment should be used to ensure that it correctly matches

the system. Similarly, the reconstruction matrix used to convert the wavefront slope

measurements into DM commands was developed using AOTools and fits the data

onto a 33×33 actuator DM. The actual reconstruction matrix for the real DM should

be used in its place. Also, the AO system components were modeled as being ideal,

and there was no accounting for the spatial influence function due to neighboring

actuators on the DM.

The resolution of the beacon images at each subaperture was chosen to be 64 ×

64 grid points, as a compromise between the time it took to run each simulation

and the quality of the results. This was chosen due to the large number of test

cases that were analyzed, but this resolution should be improved to achieve more
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accurate results once the system has been modeled correctly. Additionally, the beacon

images themselves are merely approximations, and further analysis into the effects of

perspective elongation, such as experimental data, is essential to provide a closer fit

to real effects. Other techniques such as image correlation may be a suitable option

to account for the elongation.

Finally, implementing this model in a laboratory would be of tremendous benefit

in validating the model. Unfortunately, realistic laboratory sized extended beacons

are not currently available.

5.2 Implementation

If this model was to be implemented, it is unlikely that improved calibration

factors could be determined in real-time using current computer processing capabili-

ties. To overcome this, two methods could be implemented. The first would require

pre-calculating calibration factors using the predicted trajectory of the object to be

viewed. This would be relatively simple to implement, but would require a new cali-

bration model for each trajectory. This could be done either between satellite passes

if there is sufficient time or earlier in the day once the nightly target list has been

determined.

An alternate solution could be to run the model for fixed positions in azimuth

and elevation to cover one quarter of the visible sky, as shown in Fig. 34. The

remaining sky would be determined by rotating the x and y axes of the original

measurement. Provided a sufficient number of points are analyzed in the space, the

remaining calibration factors could be interpolated from nearby measurements. It is

expected that these calibration factors could be accessed in real-time scenarios, and

would only require measurements during the initial implementation of this technique.
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Figure 34. Quadrant of the sky showing an example of how calibration could be deter-
mined at specific azimuth-elevation angles and interpolated for angles between these
points.

5.3 Key Results

This research effectively showed that using standard calibration techniques in the

presence of elongated references sources introduces inaccuracies in wavefront mea-

surement. The model developed through this research predicts that errors in the

reconstructed phase can be reduced by up to 50% by correctly predicting the shape

of the measured Shack-Hartmann spot.

Factors such as d/r0 were characterized, revealing that smaller values of d/r0

produced less errors in the reconstructed phase, which is expected. This was a useful

technique to verify the model. Additionally, the effect of detector resolution was

investigated, and again the results matched expectations. This research determined

that improving the detector from a quad cell to a 4×4 pixel detector improved results

more than by simply accounting for the source elongation during sensor calibration.

It is expected that this greater improvement will come with a much greater financial

cost, in addition to the complexity associated with its implementation.

One surprising result is the location of phase error. Despite the gradient mea-

surements visibly being most inaccurate at subapertures affected by the greatest per-
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spective elongation, this did not relate to the greatest phase errors being present at

these locations after phase reconstruction. Analysis of the location of the phase error

relevant to distance from the laser indicated that there was little to no correlation

between phase measurement error and distance to laser.

One possible explanation for this is that the results were obtained using a tilt-

removed reconstructor, whereas there may still be some residual tilt present in the

wavefront, even after being corrected by a FSM. This removal of tilt may mask the

location of errors.

5.4 Future Work

Further work on this model is highly encouraged, and recommendations on how

to improve the model are provided in this section. These include incorporating the

enhanced calibration factors into the reconstruction matrix, replacing the beacon im-

age with a more realistic image, and adjusting atmospheric parameters with telescope

orientation.

5.4.1 Dynamic Reconstructor.

In the current implementation of the model, measured wavefront slopes are mul-

tiplied by their respective calibration factors and then reconstructed using Eq. (17).

A slight variation of this method would be to post-multiply the reconstructor matrix

H with the matrix form of the calibration factors, C, such that

ϕ = HCs. (26)

Despite achieving the same results, performing this operation would allow analysis of

the effect of elongation and pupil rotation on the new reconstruction matrix HC, and
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could possibly be a precursor to developing a predictive and dynamic reconstruction

matrix.

5.4.2 Improved Beacon Image.

Another improvement that could be readily implemented involves replacing the

first-order approximation of the beacon image described by Eq. (22) with a more real-

istic image. The beacon image could be created by considering the three-dimensional

nature of the sodium layer, including the varying diamter of the laser beam as it

propagates and the Gaussian distribution of sodium atoms within the layer. The

image could be modeled using multiple two-dimensional slices through the sodium

layer, and the resulting beacon propagated to the telescope using wave optics soft-

ware. Furthermore, the calibration method using the Gaussian approximation could

remain unchanged to characterize the sensitivity of the results in this research to

changes in the shape of the beacon.

5.4.3 Varying Atmospheric Parameters.

In this model, the same C2
n profile and therefore r0 value was used to model

atmospheric turbulence, regardless of the elevation angle of the telescope. This was

done to characterize sensor performance at varying elevation angles due to beacon

elongation and rotation separately from the effects of varying atmospheric parameters.

A more realistic model would adjust the turbulence parameters with the elevation

angle of the telescope.

5.5 Impact of Work

The cumulative effect of pupil rotation and perspective elongation on wavefront

sensor measurements is a unique issue affecting the Starfire Optical Range. Despite

55



currently performing well, the system could still be improved by simply implementing

the methods outlined in this thesis. Although once more complex factors are consid-

ered, the actual reduction in RMSE of the measured phase may not be as great as

determined by this model (≈50%), a definite improvement is still achievable.
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Appendix A. MATLAB Code

Listing A.1. performance.m

1 function [EnhCal StdCal] = performance(nloops, r0fac, PIXres, az, el)

2 %PERFORMANCE determines the measurement error for standard and

3 %enhanced calibration methods with LGS elongation.

4 % Designed to run several test cases with various r0 values and

5 %detector resoltions. Produces EnhCal and StdCal, the error using

6 %each random phase screen compared against an ideal system.

7 %NOTE: Results are straight differences between ideal reconstructed

8 %phase and the two calibration methods. Further analysis such as

9 %taking the root mean square, and/or averaging over the active

10 %subapertures (877 for 32x32) must still be performed!

11 %NOTE: Don't forget to generate H, the reconstruction matrix from the

12 %subapdlg toolbox!!

13 %

14 % @author: FLTLT Russell McGuigan

15 % @date: 21Feb2011

16 % @inputs:

17 % nloops: number of random phase screen draws

18 % r0fac: factor to alter r0 (for comparisons)

19 % PIXres: detector resolution (e.g. 2 for 2x2 quad cell)

20 % az/el: azimuth/elevation angles [rad]

21 % @outputs:

22 % EnhCal: error of enhanced calibration method

23 % StdCal: error of standards calibration method

24 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

25

26 %%%%%%%%%%%%%%%%%%%%%%

27 % Initial Setup
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28 %%%%%%%%%%%%%%%%%%%%%%

29 Diameter= 3.5;%Telescope diameter, [m]

30 Nsub= 32; %Number of subapertures across telescope

31 L sep= 1; %radial separation of laser from edge of telescope,[m]

32 theta 0= 0; %initial offset of Coude path [deg]

33

34 r0=0.061*r0fac; %Fried's parameter

35 N=2ˆ10; %Resolution of phase screen

36 PSFres=64; %resolution of PSF and Ellipse image

37

38 myPath = myTrack(az,el); %generate track data

39 myLayer = myLayers(myPath);%determine distance to sodium layer

40 %boundaries for given track data

41 myTelescope = myTel( Nsub,Diameter,L sep,[], PIXres, theta 0);

42 %generates subaperture grid

43 myLaser=myC rotate(myTelescope,myPath);

44 %Determines Coude rotation for a given

45 %path and telescope

46 myTurb = myAtmosphere(Nsub,Diameter,r0,N);

47 %Generates random phase screen

48 PSFwidth=1; %Determines width of sincˆ2 function

49 [PSF eta nu]=myPSFgen(myTelescope,PSFres,PSFwidth);

50 %Generates PSF for a given system

51 minor ax=0.1; %Width of ellipse minor axis

52 res=8; %factor to upsample calibration data

53 %to achieve smooth curves

54 shiftfac=0.09*PSFres/32; %Factor to translate images due to

55 %local tilt. Similar effect to

56 %changing the speed of a lens

57

58 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

59 %% Standard Calibration
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60 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

61 calpos=[−15:3:15]; %radian range to calibrate sensor over

62 myLayer2=myLayer; %reproduce layer values, used to

63 myLayer2.Mean=0; %produce a 'null' ellipse for standard

64 %calibration

65 for xcal=1:length(calpos); %determines centroid of each input

66 ycal=0; %translates in x direction only

67 ellipse=myEllipseGen(myLaser,1, myTelescope.x(1,1),...

68 myTelescope.y(1,1),eta, nu, myLayer2,0.005,1,...

69 calpos(xcal),ycal,shiftfac);

70 %generate ellipse for one subaperture.

71 %based on telescope/target parameters

72 convolved ellipse=conv2(PSF,ellipse);

73 %convolves ellipse and PSF

74 cutoff=round(0.25*length(convolved ellipse));

75 %determines excess padding to remove

76 conv ellipse4=convolved ellipse(cutoff:3*cutoff,...

77 cutoff:3*cutoff); %remove padding from convolution

78 integrated convolved=myInt(conv ellipse4,myTelescope.res);

79 %integrate images over detector pixels

80 %(effectively determines photocounts)

81 sum tot=sum(sum(integrated convolved)); %total photocounts

82 nocal x(xcal)=sum(sum(integrated convolved.*...

83 myTelescope.x loc/sum tot))/myTelescope.Diameter;

84 %determines centroid of image

85 end

86 vec x 2a=interp(nocal x,res);%interpolates measurements for a

87 %smooth cal curve

88 vec x 2=vec x 2a(1:end−res+1);%removes final values for same axis

89 %plotting

90 steps2=length(vec x 2); %determines length of cal curve

91 x ax 2=linspace(calpos(1),calpos(end),steps2);%used to aligns cal
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92 %curve to input value

93 mid=round(length(vec x 2)/2);%determines centre cal point

94 rng=round(0.07*length(vec x 2));%determines range over which to

95 %fit linear region (0.07= +and−7%)

96 test x=polyfit(x ax 2(mid−rng:mid+rng),vec x 2(mid−rng:mid+rng),1);

97 %fit linear polynomian (line) to curve

98 nocal x2=test x(1); %takes gradient of line as cal factor

99 nocal y2=nocal x2; %x and y are symmetric

100 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

101 %% Enhanced Calibration

102 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

103 %Performs same calibration as standard cal, but generates a

104 %unique beacon images at each subaperture to model actual

105 %measurements

106 for x pos = 1:Nsub %Perform for all subapertures

107 for y pos = 1:Nsub %(within mask)

108 if (myTelescope.mask(x pos,y pos)>0)

109 for xcal=1:length(calpos);

110 ycal=0;

111 ellipse=myEllipseGen2(myLaser,...

112 1, myTelescope.x(x pos,y pos),...

113 myTelescope.y(x pos,y pos),eta, nu,...

114 myLayer,minor ax,1,calpos(xcal),ycal,...

115 shiftfac);%generate unique ellipse

116 convolved ellipse=conv2(PSF,ellipse);

117 cutoff=(0.25*length(convolved ellipse));

118 conv ellipse4=convolved ellipse(ceil(cutoff):...

119 floor(3*cutoff),ceil(cutoff):...

120 floor(3*cutoff));

121 integrated convolved=myInt(conv ellipse4,...

122 myTelescope.res);

123 sum tot=sum(sum(integrated convolved));
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124 mycal x(xcal)=sum(sum(integrated convolved.*...

125 myTelescope.x loc/sum tot))...

126 /myTelescope.Diameter;

127 end

128 for ycal=1:length(calpos) %x and y cals will differ

129 xcal=0;

130 ellipse=myEllipseGen2(myLaser,...

131 1, myTelescope.x(x pos,y pos),...

132 myTelescope.y(x pos,y pos),...

133 eta, nu, myLayer,minor ax,1,...

134 xcal,calpos(ycal),shiftfac);

135 convolved ellipse=conv2(PSF,ellipse);

136 cutoff=(0.25*length(convolved ellipse));

137 conv ellipse4=convolved ellipse(ceil(cutoff):...

138 floor(3*cutoff),ceil(cutoff):...

139 floor(3*cutoff));

140 integrated convolved=myInt(conv ellipse4,...

141 myTelescope.res);

142 sum tot=sum(sum(integrated convolved));

143 mycal y(ycal)=sum(sum(integrated convolved.*...

144 myTelescope.y loc/sum tot))...

145 /myTelescope.Diameter;

146 end

147 vec x 2a=interp(mycal x,res);

148 vec x 2=vec x 2a(1:end−res+1);

149 vec y 2a=interp(mycal y,res);

150 vec y 2=vec y 2a(1:end−res+1);

151 steps2=length(vec x 2);

152 x ax 2=linspace(calpos(1),calpos(end),steps2);

153

154 mid=round(length(vec x 2)/2);

155 rng=round(0.1*length(vec x 2));
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156 test x=polyfit(x ax 2(mid−rng:mid+rng),...

157 vec x 2(mid−rng:mid+rng),1);

158 test y=polyfit(x ax 2(mid−rng:mid+rng),...

159 vec y 2(mid−rng:mid+rng),1);

160 cal x(x pos,y pos)=test x(1);%store cal factor

161 cal y(x pos,y pos)=test y(1);

162 else

163 cal x(x pos,y pos)=0;

164 cal y(x pos,y pos)=0;

165 end

166 end

167 end

168 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

169 %% Apply a random phase screen to score performance

170 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

171 load H %load reconstructor matrix from subapdlg toolbox

172 %must have pre saved and contain ActiveSubs and

173 %Active acts. Run toolbox and use command:

174 %'save H H H0tlt ActiveActs ActiveSubs'

175 H=H0tlt;%Use tilt removed reconstructor

176 EnhCal=zeros([nloops,Nsub+1,Nsub+1]);%pre−allocate result arrays

177 StdCal=zeros([nloops,Nsub+1,Nsub+1]);

178 for idxprime=1:nloops %perform for each iteration

179 phz=myTurb.phase; %extract phase screen data

180 phz ds=interp2(phz,linspace(1,N,Nsub+1),...

181 transpose(linspace(1,N,Nsub+1)));

182 %downsample phase screen for display, if required

183 steps=round(linspace(1,length(phz),Nsub+1));

184 screen grad x=myTurb.screen grad x; %extract gradient values

185 screen grad y=myTurb.screen grad y;

186

187 mask=logical(ActiveActs);%converts matrix to logicals
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188 S=[screen grad y(ActiveSubs); screen grad x(ActiveSubs)];

189 %creates ideal slope matris

190 P=zeros(size(ActiveActs)); %initialise reconstructed phase

191 P(mask)=H*S; %Rreconstructs phase

192

193 mycentroid x=zeros([Nsub,Nsub]); %initialise centroid values

194 mycentroid y=zeros([Nsub,Nsub]);

195 for x pos = 1:Nsub %perform centroiding for each subaperture

196 for y pos = 1:Nsub

197 if (myTelescope.mask(x pos,y pos)>0)

198 ellipse=myEllipseGen2(myLaser,...

199 1, myTelescope.x(x pos,y pos),...

200 myTelescope.y(x pos,y pos),eta, nu,...

201 myLayer,minor ax,1,...

202 screen grad x(x pos,y pos),...

203 screen grad y(x pos,y pos),shiftfac);

204 %generates beacon image, shifted depending on

205 %turbulence gradient

206 convolved ellipse=conv2(PSF,ellipse);

207 cutoff=round(0.25*length(convolved ellipse));

208 conv ellipse4=convolved ellipse(cutoff:...

209 3*cutoff,cutoff:3*cutoff);

210 integrated convolved=myInt(conv ellipse4,...

211 myTelescope.res);

212 sum tot=sum(sum(integrated convolved));

213 mycentroid x(x pos,y pos)=sum(sum(...

214 integrated convolved.*...

215 myTelescope.x loc/sum tot))...

216 /myTelescope.Diameter;

217 mycentroid y(x pos,y pos)=sum(sum(...

218 integrated convolved.*...

219 myTelescope.y loc/sum tot))...
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220 /myTelescope.Diameter;

221 else

222 mycentroid x(x pos,y pos)=0;

223 mycentroid y(x pos,y pos)=0;

224 end

225 end

226 end

227

228 mycentroid x n=mycentroid x./nocal x2;%apply standard

229 mycentroid y n=mycentroid y./nocal y2;%calibration factor

230 mycentroid x=mycentroid x./cal x;%apply enhanced calibration

231 mycentroid y=mycentroid y./cal y;%factor

232

233 S m=[mycentroid y(ActiveSubs); mycentroid x(ActiveSubs)];

234 P m=zeros(size(ActiveActs));

235 P m(mask)=H*S m; %reconstruct enhaced cal phase

236

237 S n=[mycentroid y n(ActiveSubs); mycentroid x n(ActiveSubs)];

238 P n=zeros(size(ActiveActs));

239 P n(mask)=H*S n; %reconstruct standard cal phase

240

241 temp1(:,:)=P−P m; %take difference between real and

242 %enhanced cal phase values

243 temp2(:,:)=P−P n; %take difference between real and

244 %standard cal phase values

245 EnhCal(idxprime,:,:)=temp1; %save result for each iteration

246 StdCal(idxprime,:,:)=temp2;

247 %results still need analysis, and to be RMSE'd

248 end

249 end
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Listing A.2. myEllipseGen.m

1 function [ellipse] = myEllipseGen( Laser, time, x, y,...

2 eta,nu, myLayer,minor ax,A , x grad,y grad,shift)

3 %MYELLIPSEGEN generates quassian beacon for a given system

4 %orientation.

5 % Eliiptical shape depends on the location of the subaperture

6 % and laser, local tilt on the wavefront, speed of the lenslet,

7 % sodium layer dimensions and look angle

8 %

9 % @author: FLTLT Russell McGuigan

10 % @date: 21Feb2011

11 % @inputs:

12 % Laser: Structure containing laser Coude rotation info

13 % time: position along track (if multiple az/el angles

14 % defined), should be 1 for single position

15 % x/y: subaperture geometry [m]

16 % eta/nu: grid on which image is formed

17 % myLayer: sodium boundary information

18 % minor ax: Ellipse minor axis (fixed)

19 % A: Ellipse max intensity (usually 1)

20 % x grad: local x tilt over subaperture

21 % y grad: local y tilt over subaperture

22 % shift: amount that tilt affects spot displacement,

23 % similar to speed or focal length of lenslet

24 % @outputs:

25 % ellipse: Gaussian (elliptical looking) beacon image

26 % which depends on all the above inputs

27 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

28

29 theta rel2 = atan2(Laser.beacon y(time)−y,...

30 Laser.beacon x(time)−x);

31 %Calculate distance and angle to laser from each subaperture
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32 dist rel=sqrt((Laser.beacon x(time)−x).ˆ2+...

33 (Laser.beacon y(time)−y).ˆ2);

34 %Calculate ground distance from subaperture to

35 %top and bottom of LGS

36 theta width=atan2(myLayer.High(time),dist rel)−...

37 atan2(myLayer.Low(time),dist rel);

38 %calculate angular width of LGS and convert to distance

39 theta2=theta width*myLayer.Mean(time);

40 theta2=max(theta2,minor ax);

41 %ensures that the width is never less than the minor axis

42 %width

43 x offset=x grad*shift*cos(theta rel2)−...

44 y grad*shift*sin(theta rel2);

45 %coordinate transformation to rotate ellipse offset

46 %to align with beacon

47 y offset=x grad*shift*sin(theta rel2)+...

48 y grad*shift*cos(theta rel2);

49 eta2=eta*cos(theta rel2)−nu*sin(theta rel2);

50 %coordinate transformation to rotate ellipse

51 %to align with beacon

52 nu2=eta*sin(theta rel2)+nu*cos(theta rel2);

53 ellipse = 1*exp(−((eta2−x offset).ˆ2/(2*theta2)+...

54 (nu2−y offset).ˆ2/(2*minor ax)))*A;

55 %generate actual ellipse

56 end

Listing A.3. Miscellaneous Functions

1 function [ myPath ] = myTrack( az,el )

2 %MYTRACK converts azimuth and elevation angle data into a

3 %single structure and converts from degrees to radians
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4 %

5 % @author: FLTLT Russell McGuigan

6 % @date: 21Feb2011

7 % @inputs:

8 % az: telescope azimuthal angle [deg]

9 % el: telescope elevation angle [deg]

10 % @outputs:

11 % myPath: structure storing az and el data [rad]

12 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

13 if length(az)˜=length(el); %basic length check to ensure

14 %a value wasn't missed

15 disp('Azimuth and Elevation data must be same length')

16 else

17 for idx=1:length(az);

18 myPath.el(idx)=el(idx)*pi/180;%convert to radians

19 myPath.az(idx)=az(idx)*pi/180;

20 end

21 end

22

23 end

24

25 function [ Layers ] = myLayers( Path, Low, High, wvl, R )

26 %MYLAYERS Determines high low and mean boundary heights for

27 %a given satellite look angle

28 %

29 % @author: FLTLT Russell McGuigan

30 % @date: 21Feb2011

31 % @inputs:

32 % Path: telescope track data (az and el) [rad]

33 % Low: sodium layer lower boundary at zenith [m]

34 % High: sodium layer upper boundary at zenith [m]

35 % wvl: sodium laser wavelength [m]
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36 % R: Earth radius [m]

37 % @outputs:

38 % Layers: structure containing boundary height info

39 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

40

41 if nargin <5 %generic earth radius if not specified

42 R=6371000;

43 end

44 if nargin<4 %sodium wavelength (if not specified)

45 wvl=589.2e−9;

46 end

47 if nargin==1; %zenith boundary heights (if not specified)

48 Low=85000;

49 High=95000;

50 end

51 Layers.R=R; %stores earth radius and laser wavelength

52 Layers.wvl=wvl;

53 Layers.High=Layers.R*cos(pi/2+Path.el)+...

54 sqrt((High+Layers.R)ˆ2−(Layers.R*sin(pi/2+Path.el)).ˆ2);

55 %Distance to top boundary layer, assuming

56 %spherical earth

57 Layers.Low=Layers.R*cos(pi/2+Path.el)+...

58 sqrt((Low+Layers.R)ˆ2−(Layers.R*sin(pi/2+Path.el)).ˆ2);

59 %Distance to lower boundary layer

60 Layers.Mean=0.5*(Layers.High+Layers.Low);%Layer midpoint

61 end

62

63 function [Telescope]=myTel(Nsub,Diameter,L sep,FOV,res,theta 0)

64 %MYTEL Stores telescope data into a single structure and

65 %generates detector geometry

66 %

67 % @author: FLTLT Russell McGuigan
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68 % @date: 21Feb2011

69 % @inputs:

70 % Nsub: Number of telescope subapertures

71 % Diameter: Telescope diameter [m]

72 % L sep: radial separation of laser from edge of

73 % telescope [m]. Put −Diameter/2 for centre

74 % launched

75 % FOV: Telescope FOV (no longer used)

76 % res: detector resolution. 2 for quad cell

77 % theta 0: initial Coude offset of exit pupil [deg]

78 % @outputs:

79 % Telescope: structure containing telescope information

80 % ans subaperture and detector geometries

81 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

82

83 Telescope.Nsub=Nsub; %stores data into structure

84 Telescope.Diameter=Diameter;

85 Telescope.L sep=L sep;

86 Telescope.FOV=FOV;

87 Telescope.res=res;

88 Telescope.theta 0=theta 0*pi/180;%convert offset to radians

89 x=(−Nsub/2+1/2:1:Nsub/2−1/2)*Diameter/Nsub;

90 %generate subaperture geometry

91 [x y]=meshgrid(x);

92 Telescope.x=x;

93 Telescope.y=y;

94 Telescope.mask=double(x.ˆ2+y.ˆ2<=(Diameter/2)ˆ2);

95 %generate subaperture mask

96 x loc=Diameter/2*((−(res−1)/res):2/res:((res−1)/res));

97 %generate detector geometry

98 [Telescope.x loc Telescope.y loc] = meshgrid(x loc);

99 end
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100

101 function [ atmosphere ] = myAtmosphere(Nsub,Diameter,r0,N)

102 %MYATMOSPHERE generates random phase screen, calculates its

103 %gradient.

104 %

105 % @author: FLTLT Russell McGuigan

106 % @date: 21Feb2011

107 % @inputs:

108 % Nsub: Number of telescope subapertures

109 % Diameter: Telescope diameter [m]

110 % r0: Atmospheric coherence diamter (Fried's

111 % parameter [m]

112 % N: Number of grid points across phase screen

113 % @outputs:

114 % atmosphere: structure containing phase screen values

115 % and average gradients over each subaperture

116 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

117

118 PHZ=kolmogphzscreen(N,Diameter,r0,0,[0 0],randi(10000));

119 %generates phase screen for given parameters. no added

120 %tilt

121 phz=PHZ.phase;

122 steps=round(linspace(1,length(phz),Nsub+1));

123 %determines locations over which to average gradients

124 atmosphere.screen grad x=zeros(Nsub); %initialis gradients

125 atmosphere.screen grad y=atmosphere.screen grad x;

126 for idx1=1:Nsub %loop for each subaperture

127 for idx2=1:Nsub

128 sub screen=phz(steps(idx1):steps(idx1+1),...

129 steps(idx2):steps(idx2+1));

130 %sub divide phase screen into subapertures

131 [fx,fy]=gradient(sub screen); %compute gradients for
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132 %each subaperture

133 atmosphere.screen grad x(idx1,idx2)=mean(mean(fx));

134 %average the gradient over the subaperture (x and y)

135 atmosphere.screen grad y(idx1,idx2)=mean(mean(fy));

136 end

137 end

138 atmosphere.phase=phz; %store phase values

139 end

140

141 function [ PSF eta nu] = myPSFgen( Telescope, res,a )

142 %MYPSFGEN generates diffraction limited spot

143 %

144 % @author: FLTLT Russell McGuigan

145 % @date: 21Feb2011

146 % @inputs:

147 % Telescope: Structure containing telescope data

148 % res: number of grid points for PSF generation

149 % a: width of PSF

150 % @outputs:

151 % PSF: sincˆ2 diffraction limited

152 % eta: cartesian grid of x values on which the

153 % PSF lies

154 % nu: eta's y value equivalent

155 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

156

157 eta=linspace(−1.75,1.75,res); %initialise sensor grid

158 [eta nu] = meshgrid(eta);

159 PSF=sinc(a*eta).ˆ2.*sinc(a*nu).ˆ2;

160 %generate PSF (sincˆ2) function

161 end

162

163 function [ Laser ] = myC rotate( Telescope, Track)
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164 %MYC ROTATE determines the Coude rotation of the laser

165 %beacon and it's x and y position

166 %

167 % @author: FLTLT Russell McGuigan

168 % @date: 21Feb2011

169 % @inputs:

170 % Telescope: Structure containing telescope data

171 % Track: Structure containing target azimuth

172 % and elvation values in radians

173 % @outputs:

174 % Laser: Coude angle and position of laser

175 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

176

177 Laser.theta beac=Track.az−Track.el+Telescope.theta 0;

178 %determine Coude rotation

179 Laser.beacon x=(Telescope.Diameter/2+Telescope.L sep)...

180 *cos(Laser.theta beac);%determine laser x location

181 Laser.beacon y=(Telescope.Diameter/2+Telescope.L sep)...

182 *sin(Laser.theta beac);%determine laser y location

183 end
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predicting the extent of beacon elongation and Coudé rotation, reference images are produced for each subaperture
throughout an engagement scenario. These reference sources are then used to continuously recalibrate the system as it
changes orientation. This model measures the effect of perspective elongation and Coudé on SHWFS measurements to
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